
Multiplex8+ RESULTS

PATIENT	SAMPLE		ORDERING PHYSICIAN
Name:	Specimen ID:	MDX-PT-28	Name:
ID:	Date of collection:		Address:
Report date:	Туре:	Metastatic	Contact:

TEST DESCRIPTION

The **Multiplex8+** breast cancer test assesses RNA-based biomarkers by conducting a **VISUALIZATION TEST** that uses RNA fluorescent in situ hybridization (RNA-FISH) to visualize a panel of biomarkers. Based on the expression of these biomarkers and the tissue histology, laser capture microdissection is used to dissect out regions of interest. With these tumor-enriched samples, a **SEQUENCING TEST** that utilizes total RNA next generation sequencing to survey gene expression in a spatially resolved manner, is further carried out. Analytical validation of **Multiplex8+** was conducted on a large retrospective cohort of 1 080 breast tumors.

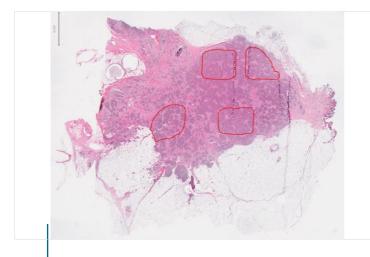
- THE TEST PROVIDES INFORMATION ABOUT:
- RECEPTOR STATUS: for RNA expression of the estrogen receptor, progesterone receptor, Her2 receptor, and Ki67 measured and cross-validated by the two tests.
- 2. MOLECULAR SUBTYPE: based on RNA gene expression tumor biology.
- 3. GENE SIGNATURES: personalized for patients' tumor biology and clinical status.

A SUMMARY IS PROVIDED BELOW AND ADDITIONAL DETAILS ARE PROVIDED IN THE FOLLOWING PAGES.

RESULTS SUMMARY

RECEPTOR STATUS						
Sample	ESR1	PGR	ERBB2	MKI67		
A (primary)	-	-	-	+		

MOLECULAR SUBTYPE


Intrinsic subtype	TNBC subtype
Basal-like	Mesenchymal (M)

RELEVANT TREATMENT

THERAPY	KEY FINDINGS	CLINICAL BENEFIT
Sacituzumab govitecan (Trodelvy)	Gene expression	Predicted benefit
Trastuzumab deruxtecan (Enhertu)	Gene expression	Predicted benefit
5-fluorouracil (5-FU)	Gene expression	Predicted benefit

LASER CAPTURE MICRODISSECTION

Based on histological assessment and RNA-FISH biomarker expression one sample (**Sample A**) was laser capture microdissected for further analysis.

RECEPTOR STATUS

Sample	ESR1	PGR	ERBB2	MKI67
A (primary)	-	-	-	+

Receptor status was determined using both the VISUALIZATION TEST and SEQUENCING TEST: the table shows results after cross-validation.

INTERPRETATION

• The results from both RNA-FISH and RNA-SEQ are concordant with the immunohistochemistry findings.

MOLECULAR SUBTYPE

Intrinsic subtype	TNBC subtype ²⁻⁴
Basal-like	Mesenchymal (M)

Based on the SEQUENCING TEST, we used a consensus subtyping approach consisting of our proprietary 293 gene molecular subtyping signature, a research-based PAM50 test and the AIMS method to classify the intrinsic molecular subtype ¹. TNBC subtype, if applicable, was classified according to Lehmann ²⁻⁴.

INTERPRETATION

- The biology of the Basal-like tumor type is consistent with the immunohistochemical and clinical designation.
- The Mesenchymal TNBC subtype is characterized by elevated expression of genes involved in epithelial-mesenchymal transition and growth factor pathways, cellular proliferation, an immunosuppressed tumor microenvironment, association with metaplastic histological subtype, poor responses to chemotherapy, and reduced survival ²⁻⁴.
- M may respond well to treatments targeting the PI3K/mTOR pathways.

GENE SIGNATURE

• Based on the assigned molecular subtype, and TNBC subtype (if applicable), we evaluated several individual genes and gene signatures that demonstrate prognostic and predictive potential in early and advanced/metastatic settings.

Treatment type/ Pathway	Gene signature	Description	Sample A Percentile	
Prognosis	Consensus prognostic signature	The prognostic signature is derived from a consensus of three research-based prognostic signatures, including the 21-gene signature GENE21 ⁵ , the 70-gene GENE70 signature ⁶ , and the 50-gene risk of relapse based on subtype alone (ROR-S) signature ⁷ . The prognostic signatures are intended for early-stage breast cancer patients with ER+/Her2– IHC, lymph node-negative, or 1-3 positive lymph nodes. The score is reported as high, intermediate, or low. Patients with high signature scores are at a greater risk of relapse and may benefit from adjuvant chemotherapy, while patients with low scores have lower risk of relapse and may not benefit from adjuvant chemotherapy.	N/A	

Treatment	Gene		Sample A
type/ Pathway	signature	Description	Percentile
	ESR1	The ESR1 and PGR genes encode for the estrogen (ER) and progesterone (PR) hormone receptors, respectively, which are involved in growth, metabolism, and	Low (3%)
	PGR	reproductive functions. High ER/PR is predictive of endocrine therapies and low or negative ER/PR is associated with poor prognosis ⁸ .	Low (3%)
Luminal signatures	ESR1_PGR average	The average gene expression of ESR1 and PGR. Higher levels of hormone receptors are predictive markers for endocrine therapies.	Low (1%)
	E2F4_score	This gene signature assesses activity of the E2F4 transcription factor and its targets. A high E2F4 signature is associated with endocrine resistance to aromatase inhibitors and may predict sensitivity to CDK4/6 inhibitors ⁹ .	Medium (57%)
	ERBB2	The ERBB2 gene is translated into Her2, a receptor tyrosine kinase involved in cell growth/proliferation and is both a prognostic marker and predictive of response to Her2 targeted therapies ⁸ .	Low (8%)
	MUC4	Mucin 4 (MUC4) is a glycoprotein that is implicated in resistance to trastuzumab through interactions with the Her2 receptor. High MUC4 is associated with reduced sensitivity to trastuzumab ¹⁰ .	Low (20%)
Her2	NRG1	NRG1 codes for neuregulin 1, a ligand of the Her3 receptor. In the phase II NeoSphere trial, high NRG1 gene expression was associated with reduced response to neoadjuvant trastuzumab, but not combination trastuzumab-pertuzumab ¹¹ .	Low (9%)
	pSTAT3-GS	A signature that predicts phosphorylation of STAT3 and was found to be predictive of trastuzumab resistance in the FinHer study ¹² .	Low (27%)
	Her2 amplicon_ MDX	Proprietary MDX 43-gene signature used to assess Her2 status.	Low (16%)
	Module7_ ERBB2	Her2-signaling signature predictive of response to multiple anti-Her2 treatments in the I-SPY2 trial ¹³ .	Low (20%)
	AURKA	Aurora Kinase A (AURKA) is a protein coding gene involved in cell proliferation and is an independent prognostic marker in breast cancer.	Low (19%)
Proliferation	МКІ67	MKI67 codes for the marker of proliferation Ki67 protein, a marker of poor prognosis in ER+/Her2– tumors, but not Her2+ or TNBC tumors. Ki67 levels are also predictive of sensitivity to neoadjuvant endocrine and chemotherapies ⁸ .	High (83%)
	Module11_ proliferation	Proliferation index used in I-SPY2 trial broadly predictive of pathological complete response in hormone receptor positive patients ⁴ .	Medium (40%)
	Proliferation_ MDX	Proprietary MDX 7-gene signature used to assess cellular proliferation and cross- validate MKI67 expression levels.	Medium (40%)
	CDK4	Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are important proteins that regulate cell cycle progression from G1 to S phases. They are the main targets of	Low (25%)
	CDK6	CDK4/6 inhibitors such as palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio); however, it is unclear whether their expression level predicts CDK4/6 inhibitor sensitivity.	High (100%)
CDK4/6 inhibitors	CCNE1		Low (2%)
	CCND3	Elevated expression of the G1/S cell cycle regulators, CCNE1, CCND3, and CDKN2D, was associated with resistance to palbociclib (Ibrance) in the single-arm phase II neoadjuvant trial (NeoPalAna) ¹⁴ .	Low (29%)
	CDKN2D		Low (11%)
PIK3CA mutations	PIK3CA-GS	A gene signature that is predictive of mutations in the PIK3CA gene and consequently the PI3K inhibitor alpelisib (Piqray). A high PIK3CA-GS score is also associated with activation of the PI3K/AKT pathway and loss of mTORC1 signaling, which may be relevant for response to mTOR inhibitors (e.g., everolimus) ¹⁵ .	Low (29%)

Treatment type/	Gene signature	Description	Sample A	
Pathway	Gene signature	Description	Percentile	
	TOP1	The gene encoding DNA topoisomerase I, an enzyme critical for DNA transcription, is a target for anticancer drugs.	Medium (55%)	
	ΤΟΡ2Α	The gene encoding DNA topoisomerase IIa, an enzyme critical for DNA transcription, is a target for anticancer drugs.	Medium (56%)	
	RAD51	The DNA repair protein RAD51 homolog 1 (RAD51) is involved in the repair of damaged DNA and is associated with resistance to chemotherapy.	Medium (54%)	
	ERCC1	The DNA excision repair protein ERCC-1 (ERCC1) is involved in the repair of DNA damage and is associated with resistance to chemotherapy.	Medium (57%)	
	TYMS	The Thymidylate Synthetase (TYMS) gene encodes a protein involved in DNA biosynthesis and is the target of the antimetabolite chemotherapy, 5-Fluorouracil ¹⁶ .	High (73%)	
	SLC29A1	SLC29A1 codes for the equilibrative nucleoside transporter 1 (ENT1) protein, which is a nucleoside transporter that is involved in transporting gemcitabine and capecitabine ¹⁷ .	Low (15%)	
	DHFR	Dihydrofolate reductase is an enzyme coded by the DHFR gene and is involved in folate metabolism and cell growth. It is the target of the antimetabolite chemotherapy, methotrexate ¹⁸ .	High (99%)	
	SLC19A1	SLC19A1 codes for the reduced folate carrier 1 (RFC1) protein, which transports methotrexate into the cell ¹⁸ .	Low (12%)	
	CDK12	The protein product of the Cyclin Dependent Kinase 12 (CDK12) gene regulates transcription, DNA repair pathways, and cell cycle ¹⁹ .	Medium (56%)	
Chemotherapy	MAPs_Mitotic_ki nases_neoadj_ch emo118	A 118-gene signature predicting response to neoadjuvant taxane chemotherapy ²⁰ .	Low (13%)	
	MAPs_Mitotic_ki nases_neoadj_ch emo17	A 17-gene signature predicting response to neoadjuvant taxane chemotherapy ²⁰ .	Medium (35%)	
	Early_Relapse_E R.Neg	Chemoresistance gene signature predicting early relapse in ER-negative (ER-) patients after taxane-anthracycline chemotherapy ²¹ .	Low (31%)	
	Residual_ disease_ ER.Neg	Chemoresistance gene signature predicting residual disease in ER-negative (ER-) patients after taxane-anthracycline chemotherapy ²¹ .	Low (7%)	
	Pathologic_ response_ ER.Neg	Chemosensitivity gene signature predicting pathological complete response in ER-negative (ER-) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (35%)	
	Early_Relapse_E R.Pos	Chemoresistance gene signature predicting early relapse in ER-positive (ER+) patients after taxane-anthracycline chemotherapy ²¹ .	High (99%)	
	Residual_ disease_ ER.Pos	Chemoresistance gene signature predicting residual disease in ER-positive (ER+) patients after taxane-anthracycline chemotherapy ²¹ .	High (67%)	
	Pathologic_ response_ ER.Pos	Chemosensitivity gene signature predicting pathological complete response in ER-positive (ER+) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (46%)	

Treatment type/	Gene signature	Description	Sample A	
Pathway			Percentile	
	PDCD1	PDCD1 codes for the immune checkpoint marker PD-1. PD-1 is the target of pembrolizumab (Keytruda), an immunotherapy approved for the first-line treatment of metastatic TNBC.	Low (26%)	
	CD274	CD274 codes for the immune checkpoint marker PD-L1. PD-L1 is the target of atezolizumab (Tecentriq), an immunotherapy approved for approved for the first-line treatment of metastatic TNBC.	Low (25%)	
	CTLA4	Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) is an immune checkpoint marker and the target of several immunotherapies such as durvalumab (Imfinzi).	Low (24%)	
Immune system	Module5_ TcellBcell		Low (18%)	
	Chemokine12	Immune signatures predictive of response to pembrolizumab in TNBC patients enrolled in (I-SPY2 trial) ¹⁴ . All signatures, with the exception of	Medium (37%)	
	STAT1	Mast_cells, were associated with increased probability of achieving pathological complete response.	Medium (46%)	
	Dendritic_cells		Low (17%)	
	Mast_cells		Low (16%)	
DNA damage and repair	VCpred_TN	DNA damage repair / immune signature predictive of response to veliparib (PARP inhibitor) and carboplatin (I-SPY2 trial) ¹⁴ .	Low (15%)	
	VEGFA	A gene coding for vascular endothelial growth factor, a protein involved in angiogenesis, vasodilation, and endothelial cell growth. VEGF is the target of the drug bevacizumab (Avastin).	Low (29%)	
Angiogenesis/ hypoxia	Hypoxia / Angiogenesis / Inflammatory_ MDX	Proprietary MDX 7-gene signature used to assess hypoxia, angiogenesis, and inflammation. Signature includes genes known to be predictive of response to bevacizumab (Avastin) in the neoadjuvant GeparQuinto trial ²² .	Low (1%)	
	ERBB2	ERBB2 codes for the protein receptor Her2, which is a target for classical anti- Her2 treatments. Low and ultralow levels of Her2 can be eligible for treatment with the antibody-drug conjugate, trastuzumab deruxtecan (Enhertu) ²³ .	Low (8%)	
	TACSTD2	TACSTD2 codes for Tumor-associated calcium signal transducer 2, also called Trop-2, which is the target of sacituzumab govitecan (Trodelvy), an antibody- drug conjugate approved for metastatic TNBC ²⁴ .	Medium (48%)	
	NECTIN4	Nectin Cell Adhesion Molecule 4 (NECTIN4) is a cell adhesion molecule that is a target for antibody-drug conjugates in clinical trials for breast cancer.	Medium (55%)	
ADC (antibody- drug conjugate)	ERBB3	ERBB3 codes for a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. It is under investigation in clinical trials for the antibody-drug conjugate patritumab deruxtecan.	High (93%)	
targets	FOLR1	FOLR1 encodes the protein Folate Receptor Alpha, which is an antibody-drug conjugate target under investigation for the treatment of metastatic TNBC in several phase 1 and 2 clinical trials.	Medium (41%)	
	F3	F3 codes for tissue factor, coagulation factor III a target of several antibody drug-conjugates in phase 1 clinical trials.	Low (13%)	
	SLC39A6	The SLC39A6 genes encodes for the zinc transporter LIV-1, which is highly expressed in luminal breast cancers and is under investigation in several phase 1 and 2 clinical trials.	High (85%)	
	TPBG	The trophoblast glycoprotein (TPBG) is overexpressed in many breast cancers and is the target of at least two antibody drug-conjugates undergoing phase 1 clinical trials.	Medium (51%)	

Treatment type/ Pathway	Gene signature	Description	Sample A Percentile	
CD27	ROR2	A gene that encodes the Receptor Tyrosine Kinase Like Orphan Receptor 2 protein, a target of the antibody drug-conjugate (Ozuriftamab Vedotin (BA3021/CAB-ROR2-ADC) that is under investigation in a phase clinical trial for advanced solid cancers, including TNBC.	Low (33%)	
	CD276	This gene codes for an immune checkpoint marker called CD276 (also known as B7-H3). It is the target of the antibody drug-conjugate (Mirzotamab clezutoclax (ABBV-155) that is in a phase 1 and 2 clinical trial for for advanced solid cancers, including breast cancer.	Low (12%)	
	VTCN1	V-Set Domain Containing T Cell Activation Inhibitor 1 (VTCN1 also called B7- H4) is an immune checkpoint marker and the target of the antibody drug- conjugate, SGN-B7H4V, which is under investigation in a phase1 clinical trial for advanced solid cancers, including breast cancer.	High (92%)	
	CEACAM5	A gene that encodes CEA Cell Adhesion Molecule 5 protein, a target of the antibody drug-conjugate Tusamitamab ravtansine (SAR408701) that is under investigation in a phase 2 clinical trial for advanced solid cancers, including breast cancer.	Low (8%)	

INTERPRETATION AND RECOMMENDATIONS

- The sample has medium TACSTD2 (Trop-2) expression (48th percentile). The Ascent III trial showed patients with high to medium expression of Trop-2 improved response to sacituzumab govitecan (Trodelvy) ²⁴. Moderate levels of TOP1 (55th percentile), the target of the SN-38 payload of Trodelvy, support the predicted benefit. If the patient is eligible, it is recommended to explore treatment options with sacituzumab govitecan (Trodelvy).
- While the sample is negative for ERBB2 mRNA and protein, there is evidence that Her2 IHC 0 (negative) patients may respond to trastuzumab deruxtecan (Enhertu). In the phase 2 DAISY trial (NCT04132960, EudraCT 2018-004868-57), 33.3% of patients with Her2 IHC 0 had a confirmed objective response to Enhertu. The efficacy of Enhertu in Her2 ultra-low patients is also being investigated in the DESTINY-Breast06 trial (NCT04494425, EudraCT 2019-004493-26). Moderate levels of TOP1 (55th percentile), the target of the deruxtecan payload of Enhertu, support the predicted benefit.
- The sample showed high expression of TYMS (73rd percentile), which may predict response to 5-fluorouracil (5-FU) and chemotherapies that are metabolized to 5-FU (e.g., capecitabine), however, the sample also has low expression of SLC29A1, which suggests resistance to capecitabine.
- High expression of DHFR (99th percentile) may indicate response to methotrexate, however, the sample also has low expression of SLC19A1, which suggests uncertain response to methotrexate.
- The high expression of ERBB3 (93rd percentile), SLC39A6 (85th percentile) and VTCN1 (92nd percentile) suggest potential benefits from several antibody-drug conjugates currently under investigation in clinical trials.
- Low/moderate expression of immune genes and signatures suggests this patient would not benefit from immune checkpoint inhibitors.

REFERENCES

1. Gendoo, D.M.A. et al. Bioinformatics 32(7): 1097–1099 (2016). **2.** Lehmann, B. D. et al. J Clin Invest 121: 2750–2767 (2011). **3.** Lehmann, B. D. et al. PLoS One 11: e0157368 (2016). **4.** Bareche, Y. et al. Ann Oncol 29: 895–902 (2018). **5.** Paik, S. et al. N Engl J Med 351(27): 2817-2826 (2004). **6.** van't Veer, L.J. et al. Nature 415(6871): 530-536 (2002). **7.** Parker, J.S. et al. J Clin Oncol 27(8): 1160-1167 (2009). **8.** Cardoso, F. et al. Ann Oncol 30(8): 1194-1220 (2019). **9.** Guerrero-Zotano, A.L. et al. Clin Cancer Res 24(11): 2517-2529 (2018). **10.** Mercogliano, M.F. et al. Clin Cancer Res 23(3): 636-648 (2017). **11.** Guardia, C. et al., Clin Cancer Res 27(18): 5096-5108 (2021). **12.** Sonnenblick, A. et al. BMC Med 13:177 (2015). **13.** Wolf, D. M. et al. Cancer Cell 40: 609-623.e6 (2022). **14.** Ma, C.X. et al. Clin Cancer Res 23(15): 4055-4065 (2017). **15.** Loi, S. et al. PNAS 107(22): 10208-10213 (2010). **16.** Foekens, J.A. et al. Cancer Res. 61: 1421-1425 (2001). **17.** Mackey, J.R. et al. Clin Cancer Res. 8(1): 110-116 (2002). **18.** Yang, V. et al. RSC Med Chem. 11(6): 646-664 (2020). **19.** Filippone, M.G. et al. Nat Commun. 13(1): 2642 (2022). **20.** Rodrigues-Ferreira, S. et al. Proc Natl Acad Sci USA 116(47): 23691-23697 (2019). **21.** Hatzis, C. et al. JAMA 305(18):1873-81 (2011). **22.** Karn, T. et al. Clin Cancer Res 26: 1896–1904 (2020). **23.** Modi, S. et al. N Engl J Med 387: 9–20 (2022). **24.** Michaleas, S. et al. ESMO Open 7 (2022).

