
# Multiplex8+ RESULTS



| PATIENT      | SAMPLE              |          | ORDERING PHYSICIAN |
|--------------|---------------------|----------|--------------------|
| Name:        | Specimen ID: MD     | DX-PT-49 | Name:              |
| ID:          | Date of collection: |          | Address:           |
| Report date: | Туре:               |          | Contact:           |

## **TEST DESCRIPTION**

The **Multiplex8+** breast cancer test assesses RNA-based biomarkers by conducting a **VISUALIZATION TEST** that uses RNA fluorescent in situ hybridization (RNA-FISH) to visualize a panel of biomarkers. Based on the expression of these biomarkers and the tissue histology, laser capture microdissection is used to dissect out regions of interest. With these tumor-enriched samples, a **SEQUENCING TEST** that utilizes total RNA next generation sequencing to survey gene expression in a spatially resolved manner, is further carried out. Analytical validation of **Multiplex8+** was conducted on a large retrospective cohort of 1 082 breast tumors.



THE TEST PROVIDES INFORMATION ABOUT:

- 1. RECEPTOR STATUS: for RNA expression of the estrogen receptor, progesterone receptor, Her2 receptor, and Ki67 measured and cross-validated by the two tests.
- 2. MOLECULAR SUBTYPE: based on RNA gene expression tumor biology.
- **3. GENE SIGNATURES:** personalized for patients' tumor biology and clinical status.

## **INTERPRETATION GUIDE**

In the following report, each gene/gene signature is given a percentile score, which ranks the expression level in the context of the patients included in our retrospective cohort. For the four main breast cancer biomarkers, estrogen receptor (*ESR1*), progesterone receptor (*PGR*), Her2 receptor (*ERBB2*), and Ki67 (*MKI67*), these percentile rankings are in the context of all 1 013 eligible patients. For all other genes/gene signatures, the percentile rankings are in the context of other patients belonging to the same **MOLECULAR SUBTYPE**. For example, for patients classified as Luminal A, the genes and gene signature will receive a percentile score compared to all Luminal A samples in our retrospective validation. The percentile scores do not necessarily imply a given level of sensitivity or resistance to a therapy.

| Sample             |
|--------------------|
| Percentile         |
| Low<br>(1-33)      |
| Medium<br>(<33-66) |
| High<br>(<66-100)  |

Percentile groups and ranges

| Subtype      | # of patients |
|--------------|---------------|
| Luminal A    | 432           |
| Luminal B    | 313           |
| HER2         | 87            |
| Basal-like   | 181           |
| All patients | 1 013         |

Number of patients in each molecular subtype and total retrospective cohort that are used to determine percentile rankings





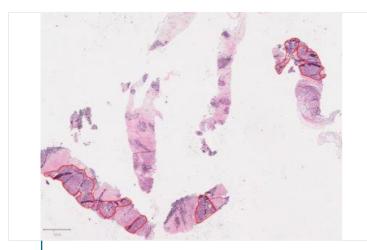
## **RESULTS SUMMARY**

A SUMMARY IS PROVIDED BELOW AND ADDITIONAL DETAILS ARE PROVIDED IN THE FOLLOWING PAGES.

#### **RECEPTOR STATUS**

| Sample | ESR1 | PGR | ERBB2 | MKI67 |
|--------|------|-----|-------|-------|
| A      | -    | -   | -     | +     |
|        |      |     |       |       |

#### **MOLECULAR SUBTYPE**


| Intrinsic subtype | TNBC subtype          |
|-------------------|-----------------------|
| Basal-like        | Immunomodulatory (IM) |

#### **RELEVANT TREATMENT**

| THERAPY                                    | KEY FINDINGS                                                  | CLINICAL BENEFIT                                 |
|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|
| Atezolizumab,<br>Pembrolizumab, Durvalumab | Gene expression, gene expression signature, molecular subtype | Predicted benefit                                |
| Bevacizumab (Avastin)                      | Gene expression, gene expression signature                    | Predicted benefit                                |
| PARP inhibitor<br>(Veliparib), Carboplatin | Gene expression signature                                     | Predicted benefit                                |
| Anthracycline/taxane<br>chemotherapy       | Molecular subtype, gene expression, gene expression signature | Predicted benefit                                |
| Gemcitabine and Capecitabine               | Gene expression                                               | Predicted benefit                                |
| 5-fluorouracil (5-FU)                      | Gene expression                                               | Predicted benefit                                |
| Antibody-drug conjugates                   | Gene expression                                               | Predicted benefit<br>(off-label, clinical trial) |
| Methotrexate                               | Gene expression                                               | No predicted benefit                             |



#### LASER CAPTURE MICRODISSECTION



Based on histological assessment and RNA-FISH biomarker expression one sample (**Sample A**) was laser capture microdissected for further analysis.

### RECEPTOR STATUS

| Sample | ESR1 | PGR | ERBB2 | MKI67 |
|--------|------|-----|-------|-------|
| А      | -    | _   | _     | +     |
|        |      |     |       |       |
|        |      |     |       |       |

Receptor status was determined using both the **VISUALIZATION TEST** and **SEQUENCING TEST**: the table shows results after cross-validation.

#### **INTERPRETATION**

• The results from the Multiplex8+ are consistent with the immunohistochemical findings.

#### **MOLECULAR SUBTYPE**

| Intrinsic subtype | TNBC subtype <sup>2-4</sup> |
|-------------------|-----------------------------|
| Basal-like        | Immunomodulatory (IM)       |

Based on the SEQUENCING TEST, we used a consensus subtyping approach consisting of our proprietary 293 gene molecular subtyping signature, a research-based PAM50 test and the AIMS method to classify the intrinsic molecular subtype <sup>1</sup>. TNBC subtype, if applicable, was classified according to Lehmann <sup>2-4</sup>.

#### **INTERPRETATION**

- The biology of the basal-like tumor type is consistent with the immunohistochemical and clinical designation.
- The basal-like subtype is similar to TNBC because it often lacks expression of hormone and HER2 receptors. Although patients with basal-like breast cancer respond better to chemotherapy, they are more susceptible to early relapse and have poorer prognosis.
- The immunomodulatory TNBC subtype shows enriched immune gene signatures, including checkpoint inhibitor genes, association with high grade, and shows favorable prognosis <sup>2-4</sup>.

#### **GENE SIGNATURE**

• Based on the assigned molecular subtype, and TNBC subtype (if applicable), we evaluated several individual genes and gene signatures that demonstrate prognostic and predictive potential in early and advanced/metastatic settings.

| Treatment<br>type/ Pathway | Gene<br>signature                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample A<br>Percentile |  |
|----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Prognosis                  | Consensus<br>prognostic<br>signature | The prognostic signature is derived from a consensus of three research-based prognostic signatures, including the 21-gene signature GENE21 <sup>5</sup> , the 70-gene GENE70 signature <sup>6</sup> , and the 50-gene risk of relapse based on subtype alone (ROR-S) signature <sup>7</sup> . The prognostic signatures are intended for early-stage breast cancer patients with ER+/Her2– IHC, lymph node-negative, or 1-3 positive lymph nodes. The score is reported as high, intermediate, or low. Patients with high signature scores are at a greater risk of relapse and may benefit from adjuvant chemotherapy, while patients with low scores have lower risk of relapse and may not benefit from adjuvant chemotherapy. | N/A                    |  |



| Treatment             | Gene                       | Description                                                                                                                                                                                                                                                                                                                          | Sample A    |  |
|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| type/ Pathway         | signature                  | Description                                                                                                                                                                                                                                                                                                                          | Percentile  |  |
|                       | ESR1                       | The ESR1 and PGR genes encode for the estrogen (ER) and progesterone (PR) hormone receptors, respectively, which are involved in growth, metabolism, and                                                                                                                                                                             | Low (8)     |  |
|                       | PGR                        | reproductive functions. High ER/PR is predictive of endocrine therapies and low or negative ER/PR is associated with poor prognosis <sup>8</sup> .                                                                                                                                                                                   | Low (4)     |  |
| Luminal<br>signatures | ESR1_PGR<br>average        | The average gene expression of ESR1 and PGR. Higher levels of hormone receptors are predictive markers for endocrine therapies.                                                                                                                                                                                                      | Low (4)     |  |
|                       | E2F4_score                 | This gene signature assesses activity of the E2F4 transcription factor and its targets.<br>A high E2F4 signature is associated with endocrine resistance to aromatase<br>inhibitors and may predict sensitivity to CDK4/6 inhibitors <sup>9</sup> .                                                                                  | High (92)   |  |
|                       | ERBB2                      | The ERBB2 gene is translated into Her2, a receptor tyrosine kinase involved in cell growth/proliferation and is both a prognostic marker and predictive of response to Her2 targeted therapies <sup>8</sup> .                                                                                                                        | Low (2)     |  |
|                       | MUC4                       | Mucin 4 (MUC4) is a glycoprotein that is implicated in resistance to trastuzumab through interactions with the Her2 receptor. High MUC4 is associated with reduced sensitivity to trastuzumab <sup>10</sup> .                                                                                                                        | High (81)   |  |
| Her2                  | NRG1                       | NRG1 codes for neuregulin 1, a ligand of the Her3 receptor. In the phase II NeoSphere trial, high NRG1 gene expression was associated with reduced response to neoadjuvant trastuzumab, but not combination trastuzumab-pertuzumab <sup>11</sup> .                                                                                   | Low (2)     |  |
|                       | pSTAT3-GS                  | A signature that predicts phosphorylation of STAT3 and was found to be predictive of trastuzumab resistance in the FinHer study <sup>12</sup> .                                                                                                                                                                                      | Medium (39) |  |
|                       | Her2<br>amplicon_<br>MDX   | Proprietary MDX 43-gene signature used to assess Her2 status.                                                                                                                                                                                                                                                                        | Low (23)    |  |
|                       | Module7_<br>ERBB2          | Her2-signaling signature predictive of response to multiple anti-Her2 treatments in the I-SPY2 trial <sup>13</sup> .                                                                                                                                                                                                                 | Low (2)     |  |
|                       | AURKA                      | Aurora Kinase A (AURKA) is a protein coding gene involved in cell proliferation and is an independent prognostic marker in breast cancer.                                                                                                                                                                                            | Medium (53) |  |
| Proliferation         | МКІ67                      | MKI67 codes for the marker of proliferation Ki67 protein, a marker of poor prognosis in ER+/Her2– tumors, but not Her2+ or TNBC tumors. Ki67 levels are also predictive of sensitivity to neoadjuvant endocrine and chemotherapies <sup>8</sup> .                                                                                    | High (99)   |  |
|                       | Module11_<br>proliferation | Proliferation index used in I-SPY2 trial broadly predictive of pathological complete response in hormone receptor positive patients <sup>4</sup> .                                                                                                                                                                                   | High (97)   |  |
|                       | Proliferation_<br>MDX      | Proprietary MDX 7-gene signature used to assess cellular proliferation and cross-<br>validate MKI67 expression levels.                                                                                                                                                                                                               | High (91)   |  |
|                       | CDK4                       | Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are important proteins that regulate cell cycle progression from G1 to S phases. They are the main targets of                                                                                                                                                                       | High (75)   |  |
|                       | CDK6                       | CDK4/6 inhibitors such as palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio); however, it is unclear whether their expression level predicts CDK4/6 inhibitor sensitivity.                                                                                                                                      | Low (3)     |  |
| CDK4/6<br>inhibitors  | CCNE1                      |                                                                                                                                                                                                                                                                                                                                      | High (86)   |  |
|                       | CCND3                      | Elevated expression of the G1/S cell cycle regulators, CCNE1, CCND3, and CDKN2D,<br>was associated with resistance to palbociclib (Ibrance) in the single-arm phase II<br>neoadjuvant trial (NeoPalAna) <sup>14</sup> .                                                                                                              | Low (3)     |  |
|                       | CDKN2D                     |                                                                                                                                                                                                                                                                                                                                      | High (86)   |  |
| PIK3CA<br>mutations   | PIK3CA-GS                  | A gene signature that is predictive of mutations in the PIK3CA gene and consequently the PI3K inhibitor alpelisib (Piqray). A high PIK3CA-GS score is also associated with activation of the PI3K/AKT pathway and loss of mTORC1 signaling, which may be relevant for response to mTOR inhibitors (e.g., everolimus) <sup>15</sup> . | High (70)   |  |

| Treatment type/<br>Pathway | Gene signature                               | Description                                                                                                                                                                                         | Sample A<br>Percentile |  |
|----------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
|                            | TOP1                                         | The gene encoding DNA topoisomerase I, an enzyme critical for DNA transcription, is a target for anticancer drugs.                                                                                  | High (71)              |  |
|                            | ΤΟΡ2Α                                        | The gene encoding DNA topoisomerase IIa, an enzyme critical for DNA transcription, is a target for anticancer drugs.                                                                                | High (81)              |  |
|                            | RAD51                                        | The DNA repair protein RAD51 homolog 1 (RAD51) is involved in the repair of damaged DNA and is associated with resistance to chemotherapy.                                                          | Medium<br>(64)         |  |
|                            | ERCC1                                        | The DNA excision repair protein ERCC-1 (ERCC1) is involved in the repair of DNA damage and is associated with resistance to chemotherapy.                                                           | Medium<br>(64)         |  |
|                            | TYMS                                         | The Thymidylate Synthetase (TYMS) gene encodes a protein involved in DNA biosynthesis and is the target of the antimetabolite chemotherapy, 5-Fluorouracil <sup>16</sup> .                          | High (87)              |  |
|                            | SLC29A1                                      | SLC29A1 codes for the equilibrative nucleoside transporter 1 (ENT1) protein, which is a nucleoside transporter that is involved in transporting gemcitabine and capecitabine <sup>17</sup> .        | Medium<br>(52)         |  |
|                            | DHFR                                         | Dihydrofolate reductase is an enzyme coded by the DHFR gene and is involved in folate metabolism and cell growth. It is the target of the antimetabolite chemotherapy, methotrexate <sup>18</sup> . | High (73)              |  |
|                            | SLC19A1                                      | SLC19A1 codes for the reduced folate carrier 1 (RFC1) protein, which transports methotrexate into the cell <sup>18</sup> .                                                                          | Low (24)               |  |
|                            | CDK12                                        | The protein product of the Cyclin Dependent Kinase 12 (CDK12) gene regulates transcription, DNA repair pathways, and cell cycle <sup>19</sup> .                                                     | Medium<br>(50)         |  |
| Chemotherapy               | MAPs_Mitotic_ki<br>nases_neoadj_ch<br>emo118 | A 118-gene signature predicting response to neoadjuvant taxane chemotherapy <sup>20</sup> .                                                                                                         | High (85)              |  |
|                            | MAPs_Mitotic_ki<br>nases_neoadj_ch<br>emo17  | A 17-gene signature predicting response to neoadjuvant taxane chemotherapy <sup>20</sup> .                                                                                                          | High (83)              |  |
|                            | Early_Relapse_E<br>R.Neg                     | Chemoresistance gene signature predicting early relapse in ER-negative (ER-) patients after taxane-anthracycline chemotherapy <sup>21</sup> .                                                       | Medium<br>(39)         |  |
|                            | Residual_<br>disease_ ER.Neg                 | Chemoresistance gene signature predicting residual disease in ER-negative (ER-) patients after taxane-anthracycline chemotherapy <sup>21</sup> .                                                    | High (82)              |  |
|                            | Pathologic_<br>response_<br>ER.Neg           | Chemosensitivity gene signature predicting pathological complete response in ER-negative (ER-) patients after taxane-anthracycline chemotherapy <sup>21</sup> .                                     | Medium<br>(65)         |  |
|                            | Early_Relapse_E<br>R.Pos                     | Chemoresistance gene signature predicting early relapse in ER-positive (ER+) patients after taxane-anthracycline chemotherapy <sup>21</sup> .                                                       | High (89)              |  |
|                            | Residual_<br>disease_ ER.Pos                 | Chemoresistance gene signature predicting residual disease in ER-positive (ER+) patients after taxane-anthracycline chemotherapy <sup>21</sup> .                                                    | High (93)              |  |
|                            | Pathologic_<br>response_<br>ER.Pos           | Chemosensitivity gene signature predicting pathological complete response in ER-positive (ER+) patients after taxane-anthracycline chemotherapy <sup>21</sup> .                                     | High (73)              |  |



| Treatment type/                   | Gene signature                                      | Description                                                                                                                                                                                                                                                 | Sample A                                                                     |  |
|-----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Pathway                           | Ŭ                                                   |                                                                                                                                                                                                                                                             | Percentile                                                                   |  |
|                                   | PDCD1                                               | PDCD1 codes for the immune checkpoint marker PD-1. PD-1 is the target of pembrolizumab (Keytruda), an immunotherapy approved for the first-line treatment of metastatic TNBC.                                                                               | High (78)                                                                    |  |
|                                   | CD274                                               | CD274 codes for the immune checkpoint marker PD-L1. PD-L1 is the target of atezolizumab (Tecentriq), an immunotherapy approved for approved for the first-line treatment of metastatic TNBC.                                                                | High (75)                                                                    |  |
|                                   | CTLA4                                               | Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) is an immune checkpoint marker and the target of several immunotherapies such as durvalumab (Imfinzi).                                                                                                  | Medium<br>(49)                                                               |  |
| Immune system                     | Module5_<br>TcellBcell                              |                                                                                                                                                                                                                                                             | High (74)                                                                    |  |
|                                   | Chemokine12                                         | Immune signatures predictive of response to pembrolizumab in TNBC patients enrolled in (I-SPY2 trial) <sup>13</sup> . All signatures, with the exception of                                                                                                 | High (84)                                                                    |  |
|                                   | STAT1                                               | Mast_cells, were associated with increased probability of achieving pathological complete response.                                                                                                                                                         | ast_cells, were associated with increased probability of achieving High (83) |  |
|                                   | Dendritic_cells                                     |                                                                                                                                                                                                                                                             | High (96)                                                                    |  |
|                                   | Mast_cells                                          |                                                                                                                                                                                                                                                             | Low (27)                                                                     |  |
| DNA damage and repair             | VCpred_TN                                           | DNA damage repair / immune signature predictive of response to veliparib (PARP inhibitor) and carboplatin (I-SPY2 trial) <sup>13</sup> .                                                                                                                    | High (71)                                                                    |  |
|                                   | VEGFA                                               | A gene coding for vascular endothelial growth factor, a protein involved in angiogenesis, vasodilation, and endothelial cell growth. VEGF is the target of the drug bevacizumab (Avastin).                                                                  | High (96)                                                                    |  |
| Angiogenesis/<br>hypoxia          | Hypoxia /<br>Angiogenesis /<br>Inflammatory_<br>MDX | Proprietary MDX 7-gene signature used to assess hypoxia, angiogenesis, and inflammation. Signature includes genes known to be predictive of response to bevacizumab (Avastin) in the neoadjuvant GeparQuinto trial <sup>22</sup> .                          | High (93)                                                                    |  |
|                                   | ERBB2                                               | ERBB2 codes for the protein receptor Her2, which is a target for classical anti-<br>Her2 treatments. Low and ultralow levels of Her2 can be eligible for<br>treatment with the antibody-drug conjugate, trastuzumab deruxtecan<br>(Enhertu) <sup>23</sup> . | Low (2)                                                                      |  |
|                                   | TACSTD2                                             | TACSTD2 codes for Tumor-associated calcium signal transducer 2, also called Trop-2, which is the target of sacituzumab govitecan (Trodelvy), an antibody-<br>drug conjugate approved for metastatic TNBC <sup>24</sup> .                                    | Low (21)                                                                     |  |
|                                   | NECTIN4                                             | Nectin Cell Adhesion Molecule 4 (NECTIN4) is a cell adhesion molecule that is a target for antibody-drug conjugates in clinical trials for breast cancer.                                                                                                   | Medium<br>(46)                                                               |  |
| ADC (antibody-<br>drug conjugate) | ERBB3                                               | ERBB3 codes for a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. It is under investigation in clinical trials for the antibody-drug conjugate patritumab deruxtecan.                                            | Low (28)                                                                     |  |
| targets                           | FOLR1                                               | FOLR1 encodes the protein Folate Receptor Alpha, which is an antibody-drug conjugate target under investigation for the treatment of metastatic TNBC in several phase 1 and 2 clinical trials.                                                              | High (86)                                                                    |  |
|                                   | F3                                                  | F3 codes for tissue factor, coagulation factor III a target of several antibody drug-conjugates in phase 1 clinical trials.                                                                                                                                 | Low (11)                                                                     |  |
|                                   | SLC39A6                                             | The SLC39A6 genes encodes for the zinc transporter LIV-1, which is highly expressed in luminal breast cancers and is under investigation in several phase 1 and 2 clinical trials.                                                                          | High (77)                                                                    |  |
|                                   | ТРВС                                                | The trophoblast glycoprotein (TPBG) is overexpressed in many breast cancers<br>and is the target of at least two antibody drug-conjugates undergoing phase 1<br>clinical trials.                                                                            | Medium<br>(43)                                                               |  |

| Treatment type/<br>Pathway | Gene signature | Description                                                                                                                                                                                                                                                                                      | Sample A<br>Percentile |  |
|----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
|                            | ROR2           | A gene that encodes the Receptor Tyrosine Kinase Like Orphan Receptor 2 protein, a target of the antibody drug-conjugate (Ozuriftamab Vedotin (BA3021/CAB-ROR2-ADC) that is under investigation in a phase clinical trial for advanced solid cancers, including TNBC.                            | Medium<br>(39)         |  |
|                            | CD276          | This gene codes for an immune checkpoint marker called CD276 (also<br>known as B7-H3). It is the target of the antibody drug-conjugate<br>(Mirzotamab clezutoclax (ABBV-155) that is in a phase 1 and 2 clinical trial<br>for for advanced solid cancers, including breast cancer.               | High (77)              |  |
|                            | VTCN1          | V-Set Domain Containing T Cell Activation Inhibitor 1 (VTCN1 also called B7-<br>H4) is an immune checkpoint marker and the target of the antibody drug-<br>conjugate, SGN-B7H4V, which is under investigation in a phase1 clinical trial<br>for advanced solid cancers, including breast cancer. | Medium<br>(61)         |  |
|                            | CEACAM5        | A gene that encodes CEA Cell Adhesion Molecule 5 protein, a target of the antibody drug-conjugate Tusamitamab ravtansine (SAR408701) that is under investigation in a phase 2 clinical trial for advanced solid cancers, including breast cancer.                                                | Low (8)                |  |

#### INTERPRETATION AND RECOMMENDATIONS

- Designation as the immunomodulatory (IM) TNBC subtype as well as medium/high scores of all immune-related genes and gene signatures, except Mast\_cells, suggest good response to immune checkpoint inhibitors, such as atezolizumab, pembrolizumab or durvalumab. Notably, the Mast\_cells signature was not predictive of immunotherapy efficacy in TNBC patients of the I-SPY2 trial.
- High expression of angiogenesis markers (VEGFA, Hypoxia/Angiogenesis/Inflammatory\_MDX) suggest bevacizumab (Avastin) may be a relevant treatment in the metastatic setting.
- In the I-SPY2 study, a high VCpred\_TN signature score, which reflects immune activation as well as lack of DNA damage repair, was shown to predict response to veliparib and carboplatin, a finding that was also validated in the BrighTNess study. Since the patient has a high VCpred\_TN signature, treatment with PARP inhibitors combined with platinum-based chemotherapy may be beneficial.
- Sensitivity to neoadjuvant/adjuvant anthracycline/taxane chemotherapy is supported by the basal-like molecular subtype, high expression of proliferation genes (MKI67) and gene signatures (Proliferation\_MDX), and high/moderate gene signatures for chemotherapy response (MAPs\_Mitotic\_kinases\_neoadj\_chemo118, MAPs\_Mitotic\_kinases\_neoadj\_chemo17, and Pathologic\_response\_ER.Neg). Therefore, the patient may benefit from neoadjuvant/adjuvant anthracycline/taxane chemotherapy. Note the high expression of the resistance marker Residual\_ disease\_ER.Neg.
- Expression levels of nucleoside transporters like SLC29A1 are tied to sensitivity to gemcitabine and capecitabine, with medium/high levels predicting sensitivity. Also, high levels of TYMS may predict response to 5-fluorouracil and chemotherapies that are metabolized to 5-FU (e.g., capecitabine).
- The sample shows high expression of several targets for antibody-drug conjugates, including FOLR1, SLC39A6, and CD276. These are currently being investigated in clinical trials for breast cancer.
- Low expression of SLC19A1 and high expression of DHFR may indicate either primary or secondary resistance to methotrexate, depending on prior treatment history with this drug.

#### REFERENCES

**1.** Gendoo, D.M.A. et al. Bioinformatics 32(7): 1097–1099 (2016). **2.** Lehmann, B. D. et al. J Clin Invest 121: 2750–2767 (2011). **3.** Lehmann, B. D. et al. PLoS One 11: e0157368 (2016). **4.** Bareche, Y. et al. Ann Oncol 29: 895–902 (2018). **5.** Paik, S. et al. N Engl J Med 351(27): 2817-2826 (2004). **6.** van't Veer, L.J. et al. Nature 415(6871): 530-536 (2002). **7.** Parker, J.S. et al. J Clin Oncol 27(8): 1160-1167 (2009). **8.** Cardoso, F. et al. Ann Oncol 30(8): 1194-1220 (2019). **9.** Guerrero-Zotano, A.L. et al. Clin Cancer Res 24(11): 2517-2529 (2018). **10.** Mercogliano, M.F. et al. Clin Cancer Res 23(3): 636-648 (2017). **11.** Guardia, C. et al., Clin Cancer Res 27(18): 5096-5108 (2021). **12.** Sonnenblick, A. et al. BMC Med 13:177 (2015). **13.** Wolf, D. M. et al. Cancer Cell 40: 609-623.e6 (2022). **14.** Ma, C.X. et al. Clin Cancer Res 23(15): 4055-4065 (2017). **15.** Loi, S. et al. PNAS 107(22): 10208-10213 (2010). **16.** Foekens, J.A. et al. Cancer Res. 61: 1421-1425 (2001). **17.** Mackey, J.R. et al. Clin Cancer Res. 8(1): 110-116 (2002). **18.** Yang, V. et al. RSC Med Chem. 11(6): 646-664 (2020). **19.** Filippone, M.G. et al. Nat Commun. 13(1): 2642 (2022). **20.** Rodrigues-Ferreira, S. et al. Proc Natl Acad Sci USA 116(47): 23691-23697 (2019). **21.** Hatzis, C. et al. JAMA 305(18):1873-81 (2011). **22.** Karn, T. et al. Clin Cancer Res 26: 1896–1904 (2020). **23.** Modi, S. et al. N Engl J Med 387: 9–20 (2022). **24.** Michaleas, S. et al. ESMO Open 7 (2022).



ID: PAGE 7/7